26 research outputs found

    Multi-Frequency Modulation and Control for DC/AC and AC/DC Resonant Converters

    Get PDF
    Harmonic content is inherent in switched-mode power supplies. Since the undesired harmonics interfere with the operation of other sensitive electronics, the reduction of harmonic content is essential for power electronics design. Conventional approaches to attenuate the harmonic content include passive/active filter and wave-shaping in modulation. However, those approaches are not suitable for resonant converters due to bulky passive volumes and excessive switching losses. This dissertation focuses on eliminating the undesired harmonics from generation by intelligently manipulating the spectrum of switching waveforms, considering practical needs for functionality.To generate multiple ac outputs while eliminating the low-order harmonics from a single inverter, a multi-frequency programmed pulse width modulation is investigated. The proposed modulation schemes enable multi-frequency generation and independent output regulation. In this method, the fundamental and certain harmonics are independently controlled for each of the outputs, allowing individual power regulations. Also, undesired harmonics in between output frequencies are easily eliminated from generation, which prevents potential hazards caused by the harmonic content and bulky filters. Finally, the proposed modulation schemes are applicable to a variety of DC/AC topologies.Two applications of dc/ac resonant inverters, i.e. an electrosurgical generator and a dual-mode WPT transmitter, are demonstrated using the proposed MFPWM schemes. From the experimental results of two hardware prototypes, the MFPWM alleviates the challenges of designing a complicated passive filter for the low-order harmonics. In addition, the MFPWM facilitates combines functionalities using less hardware compared to the state-of-the-art. The prototypes demonstrate a comparable efficiency while achieving multiple ac outputs using a single inverter.To overcome the low-efficiency, low power-density problems in conventional wireless fast charging, a multi-level switched-capacitor ac/dc rectifier is investigated. This new WPT receiver takes advantage of a high power-density switched-capacitor circuit, the low harmonic content of the multilevel MFPWMs, and output regulation ability to improve the system efficiency. A detailed topology evaluation regarding the regulation scheme, system efficiency, current THD and volume estimation is demonstrated, and experimental results from a 20 W prototype prove that the multi-level switched-capacitor rectifier is an excellent candidate for high-efficiency, high power density design of wireless fast charging receiver

    Power conversion and signal transmission integration method based on dual modulation of DC-DC converters

    Get PDF
    For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution

    Wireless power and data transfer via a common inductive link using frequency division multiplexing

    Get PDF
    For wireless power transfer (WPT) systems, communication between the primary side and the pickup side is a challenge because of the large air gap and magnetic interferences. A novel method, which integrates bidirectional data communication into a high-power WPT system, is proposed in this paper. The power and data transfer share the same inductive link between coreless coils. Power/data frequency division multiplexing technique is applied, and the power and data are transmitted by employing different frequency carriers and controlled independently. The circuit model of the multiband system is provided to analyze the transmission gain of the communication channel, as well as the power delivery performance. The crosstalk interference between two carriers is discussed. In addition, the signal-to-noise ratios of the channels are also estimated, which gives a guideline for the design of mod/demod circuits. Finally, a 500-W WPT prototype has been built to demonstrate the effectiveness of the proposed WPT system

    Genesis of the Wutuogou Ag-Pb-Zn deposit in the Eastern Kunlun Orogenic Belt, NW China: Constraints from calcite U-Pb geochronology, mineral chemistry, and in-situ sulfur isotopes

    Get PDF
    The Wutuogou Ag-Pb-Zn deposit, a newly discovered vein-type deposit, is located in the Eastern Kunlun Orogenic Belt (EKOB), northwestern China. The vein-type Ag-Pb-Zn ore bodies are hosted in Middle Triassic granodiorite and monzogranite and are characterized by high-grade Ag, Pb, and Zn (average Ag: 293 g/t, Pb: 3.00 %, Zn: 2.85 %). Three paragenetic stages have been recognized: quartz + pyrite (Py-1) + arsenopyrite (stage I), pyrite (Py-2) + sphalerite + chalcopyrite + tetrahedrite + quartz (substage II-1), galena + pyrargyrite + freibergite + freieslebenite + quartz + calcite (substage II-2), and quartz + calcite (stage III). Except for Ag-bearing minerals (pyrargyrite, freibergite, and freieslebenite), invisible silver is also present in pyrite (1.91–165 ppm), sphalerite (3.86–8806 ppm), and galena (up to 0.21 wt%). The calcite is closely associated with sulfides in substage II-2 and yields a U-Pb age of 210 ± 7 Ma (MSWD = 2.7), which represents the ore-forming age (lower limit). Py-1 displays higher As contents and lower Co contents than those of Py-2, indicating a decrease in temperature from stage I to stage II. In addition, the Fe/Zn mass ratios (0.025–0.075) of sphalerite estimate the fluid temperature for substage II-1 of 246–284 ◦C, whereas the Ag/(Ag + Cu) and Zn/(Zn + Fe) mole ratios of freibergite estimate the fluid temperature for substage II-2 of 140–270 ◦C, further indicating the decrease of temperature from stage I through substage II-1 to substage II-2. Mineral assemblages of pyrite-chalcopyrite-tetrahedrite in substage II-1 and Ag-sulfosalts in substage II-2 suggest a decrease in sulfur fugacity (fS2). Both the decrease in fS2 and cooling of the mineralizing fluids facilitate silver precipitation. The heterogeneous compositions of the freibergite and the Ag zonation in sphalerite (Sp-1) resulted from retrograde solid-state reactions that redistributed Ag through microscale exsolution. The δ34S values (+5.49 to +7.78 ‰) of the sulfides and the low Zn/Cd ratios (107–195) of sphalerite indicate a felsic magma source for the ore-forming materials. Therefore, we concluded that the Wutuogou Ag-Pb-Zn deposit corresponds to a medium- to low-temperature magmatic-hydrothermal deposit associated with Late Triassic magmatism in the Eastern Kunlun Orogenic Belt (EKOB)Genesis of the Wutuogou Ag-Pb-Zn deposit in the Eastern Kunlun Orogenic Belt, NW China: Constraints from calcite U-Pb geochronology, mineral chemistry, and in-situ sulfur isotopespublishedVersio

    Spectral self-adaptive absorber/emitter for harvesting energy from the sun and outer space

    Full text link
    The sun (~6000 K) and outer space (~3 K) are the original heat source and sink for human beings on Earth. The energy applications of absorbing solar irradiation and harvesting the coldness of outer space for energy utilization have attracted considerable interest from researchers. However, combining these two functions in a static device for continuous energy harvesting is unachievable due to the intrinsic infrared spectral conflict. In this study, we developed spectral self-adaptive absorber/emitter (SSA/E) for daytime photothermal and nighttime radiative sky cooling modes depending on the phase transition of the vanadium dioxide coated layer. A 24-hour day-night test showed that the fabricated SSA/E has continuous energy harvesting ability and improved overall energy utilization performance, thus showing remarkable potential in future energy applications.Comment: 15 pages, 4 figure

    Low Carbon Economy Performance Analysis with the Intertemporal Effect of Capital in China

    No full text
    The “New Normal” of Chinese economy represents the importance of economic performance. To analyze the provincial performance of the low-carbon economy in China, this paper constructed a three-stage dynamic Malmquist model considering the evolutionary promotion of productivity and technical progress. This paper incorporates the lag effect of capital accumulation into the performance evaluation to ensure transitivity and continuity. Furthermore, the inefficiency of the low-carbon economy arises from the disadvantages of resources endowments; therefore, it is necessary to eliminate these to evaluate managerial performance. This paper not only evaluates the provincial performance of the low-carbon economy but also suggests the sources and impetus of regional low-carbon economy development to find feasible transition paths. The empirical results reveal that the performance of the low-carbon economy presents a gradient distribution with obvious distinctions among the eastern, central, and western regions. Tianjin and Hebei should emphasize the optimal allocation of their own resources. Jiangxi and Hunan, by contrast, should focus on the perfection of the resources endowments

    GaN-Based Dual-Mode Wireless Power Transfer Using Multifrequency Programmed Pulse Width Modulation

    No full text

    RESEARCH ON VEHICLE COMPONENTS’DAMAGE CORRELATION MODEL OF USER ROAD AND TEST FIELD BASED ON LOAD FREQUENCY

    No full text
    The load data of Chinese users’ road and test field road is collected and analyzed in this paper. Through calculating the damage of each frequency band of load data,the corresponding test field feature matrix and user road target matrix are established,the equivalent load spectrum and damage model are compared,and a kind of damage model based on load frequency is set up. The model of damage correlation between user road and test field is obtained,the cycle number of different road is matched,and the optimal test standard is obtained. This paper provides a reference and technical basis for establishing a test field specification which conforms the user’s road characteristics accurately
    corecore